Curvature and Tachibana numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pontryagin Numbers and Nonnegative Curvature

We prove that any rational linear combination of Pontryagin numbers that is not a multiple of the signature is unbounded on connected closed oriented manifolds of nonnegative sectional curvature. Combining our result with Gromov’s finiteness result for the signature yields a new characterization of the L-genus.

متن کامل

Curvature, Cones, and Characteristic Numbers

We study Einstein metrics on smooth compact 4-manifolds with an edge-cone singularity of specified cone angle along an embedded 2-manifold. To do so, we first derive modified versions of the GaussBonnet and signature theorems for arbitrary Riemannian 4-manifolds with edge-cone singularities, and then show that these yield non-trivial obstructions in the Einstein case. We then use these integral...

متن کامل

Topological Quantum Numbers and Curvature — Examples and Applications

Using the idea of the degree of a smooth mapping between two manifolds of the same dimension we present here the topological (homotopical) classification of the mappings between spheres of the same dimension, vector fields, monopole and instanton solutions. Starting with a review of the elements of Riemannian geometry we also present an original elementary proof of the Gauss-Bonnet theorem and ...

متن کامل

Curvature and Characteristic Numbers of Hyper-kähler Manifolds

Characteristic numbers of compact hyper-Kähler manifolds are expressed in graphtheoretical form, considering them as a special case of the curvature invariants introduced by L. Rozansky and E. Witten. The appropriate graphs are generated by “wheels,” and the recently proved Wheeling theorem is used to give a formula for the L 2-norm of the curvature of an irreducible hyper-Kähler manifold in te...

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sbornik: Mathematics

سال: 2011

ISSN: 1064-5616,1468-4802

DOI: 10.1070/sm2011v202n07abeh004177